について 接触 |
電話番号: +86 (0)755-8524-1496
Eメール: info@alcantapcb.com

高周波&高速PCB/

What is the Rogers 4350B High Frequency Circuit Materials?

Rogers 4350B PCB サプライヤー. We have made the Rogers 4350B core pcb boards from 2 レイヤーに 30 レイヤー. We offer ultrathin Rogers 4350B PCB, Blind & buried vias Rogers 4350B pcb, Mixed medium HDI Rogers 4350B PCBS.

ロジャースの資料のエージェントからこれらの材料を購入し、空白のサーキット基板を処理して生産する. コアマテリアルは生産していません. 次の情報は参照用です.

RO4003™ laminates are currently offered in various confifi gurations utilizing both 1080 そして 1674 ガラス生地のスタイル, with all confifi gurations meeting the same laminate electrical performance specififi cation.

RO4003C のドロップイン代替品として™ 材料, RO4350B™ laminates utilize RoHS compliant flfl ame-retardant technology for applications requiring UL 94V-0 certififi cation. これらの材料は、IPCの要件に準拠しています- 4103, スラッシュシート /10 RO4003Cおよび /11 RO4350B材料用.

ROGERS 4350B PCB

財産典型的な値

RO4003C RO4350B

方向ユニット状態テスト方法
誘電率, は

プロセス

 

3.38 ± 0.05

 

(2)3.48 ± 0.05

 

z

 

 

10 GHz/23°C

IPC-TM-650 2.5.5.5

クランプされたストリップライン

(1) 誘電率, は

デザイン

3.553.66z8 に 40 GHz微分位相長方法
散逸係数タン, d0.0027

0.0021

0.0037

0.0031

z10 GHz/23°C

2.5 GHz/23°C

IPC-TM-650 2.5.5.5
ERの熱係数+40+50zppm/℃-50°C〜150°CIPC-TM-650 2.5.5.5
体積抵抗率1.7 バツ 10101.2 バツ 1010mΩ•cmcondaIPC-TM-650 2.5.17.1
表面抵抗率4.2 バツ 1095.7 バツ 109condaIPC-TM-650 2.5.17.1
電気強度31.2

(780)

31.2

(780)

zKV/mm (v/mil)0.51んん (0.020」)IPC-TM-650 2.5.6.2
引張弾性率19,650 (2,850)

19,450 (2,821)

16,767 (2,432)

14,153, (2,053)

xとMPa (KSI)RTASTM D638
抗張力139 (20.2)

100 (14.5)

203 (29.5)

130 (18.9)

xとMPa (KSI)RTASTM D638
曲げ強度276

(40)

255

(37)

MPa (KPSI)IPC-TM-650 2.4.4
寸法安定性<0.3<0.5バツ,Ymm/m (ミル/インチ)エッチング後

+E2/150°C

IPC-TM-650 2.4.39A
熱膨張係数11

14

46

10

12

32

X Y Z 

ppm/℃

 

-55 288°Cまで

IPC-TM-650 2.4.41
TG>280>280°C DSCIPC-TM-650 2.4.24
TD425390°C TGAASTM D3850
熱伝導率0.710.69w/m/°K80℃ASTM C518
 

水分吸収

 

0.06

 

0.06

 

%

48 HRSイマージョン

0.060」サンプル温度50°C

 

ASTM D570

密度1.791.86GM / CM323℃ASTM D792
銅の皮の強度1.05

(6.0)

0.88

(5.0)

n/mm (もっと)はんだフロートの後 1 オズ. EDCフォイルIPC-TM-650 2.4.8
可燃性n/a(3)V-0UL 94
リードフリープロセス互換はいはい

 

What is Rogers 4350b High frequency circuit boards?

High frequency PCB with Rogers material The increasing complexity of electronic components and switches continually requires faster signal flow rates, したがって、伝送周波数が高くなります. 電子コンポーネントのパルス上昇時間が短いため, また、高頻度でも必要になりました (HF) 導体の幅を電子コンポーネントと見なす技術. さまざまなパラメーターに応じて, HF信号は回路基板に反映されます, インピーダンスを意味します (動的抵抗) 送信コンポーネントに関して異なります. このような容量性効果を防ぐため, すべてのパラメーターを正確に指定する必要があります, プロセス制御の最高レベルで実装されています. 高周波回路基板のインピーダンスにとって重要なのは、主に導体トレースジオメトリです, レイヤーの蓄積, 誘電率 (εr) 使用される材料の.

ALCANTA PCB has bought these materials from an agent at Rogers Materials and then process and produce blank circuit boards.

 

ロジャース基板

ロジャース基板

HF回路基板に使用される材料:

高周波ボード, 例えば. 上部GHz範囲のワイヤレスアプリケーションとデータレートの場合、使用される材料に特別な要求があります: 多くのアプリケーションで断熱厚と誘電率が低い耐性が低い効率的な信号伝達の低下誘電率低減衰均質構造, it is sufficient to use FR4 material with an appropriate layer buildup. 加えて, 誘電特性が改善された高周波材料を処理します. これらは非常に低い損失因子を持っています, 低誘電率, 主に温度と周波数が独立しています. 追加の好ましい特性は、ガラス遷移温度が高いことです, 優れた熱耐久性, そして非常に低い親水速度. 使用します (とりわけ) ロジャースまたはPTFE材料 (例えば, デュポンのテフロン) インピーダンス制御高周波回路基板用. 材料の組み合わせのためのサンドイッチの構築も可能です.

インピーダンスチェック: 顧客によって定義されたインピーダンスは、製造可能性についてCAMステーションエンジニアによってテストされています. レイヤーの蓄積に応じて, PCBレイアウトと顧客の要求されたインピーダンス計算モデルが選択されます. その結果、レイヤーbuilduoの必要な変更と、関連する導体のジオメトリに必要な調整が必要です. 高周波回路基板の製造後, インピーダンスがチェックされます (までの精度で 5%), 詳細な結果は、テストプロトコルに正確に記録されています.

 

What is ultrathin Rogers 4350B PCB?

Exploring the World of Ultrathin Rogers 4350B PCBs:

In the realm of modern electronics, where miniaturization and high-performance are paramount, the demand for ultrathin printed circuit boards (プリント基板) has surged. Among the myriad of materials available for PCB fabrication, Rogers 4350B has emerged as a top contender for applications requiring exceptional electrical performance and dimensional stability. Let’s delve into the world of ultrathin Rogers 4350B PCBs to understand their significance and applications.

Introduction to Rogers 4350B:

Rogers 4350B is a high-frequency laminate material renowned for its outstanding electrical properties, 熱安定性, そして機械的強度. Composed of woven fiberglass reinforced hydrocarbon/ceramic laminate, Rogers 4350B offers a low dielectric constant (DK) and low loss tangent (Df), making it ideal for high-frequency applications such as microwave, RF, and millimeter-wave circuits.

Characteristics of Ultrathin Rogers 4350B PCBs:

Ultrathin Rogers 4350B PCBs exhibit several notable characteristics that make them highly desirable for various advanced electronic systems:

  1. Reduced Thickness: One of the defining features of ultrathin Rogers 4350B PCBs is their significantly reduced thickness compared to traditional PCBs. With thicknesses ranging from 0.1mm to 0.5mm or even thinner, these PCBs enable the development of sleek and compact electronic devices without compromising on performance.
  2. 高い電気性能: Despite their thin profile, ultrathin Rogers 4350B PCBs maintain exceptional electrical performance, including low loss tangent and consistent dielectric properties across a wide range of frequencies. This ensures reliable signal transmission and minimal signal distortion, critical for high-frequency applications.
  3. Excellent Dimensional Stability: Rogers 4350B exhibits excellent dimensional stability, even at elevated temperatures, making it well-suited for applications requiring precise impedance control and tight tolerance requirements. This ensures consistent electrical performance and reliability over a wide range of operating conditions.
  4. Suitability for High-Frequency Applications: Ultrathin Rogers 4350B PCBs are specifically designed to meet the stringent requirements of high-frequency circuits, including microwave and RF applications. Their low dielectric constant and low loss tangent make them ideal for use in antennas, 衛星通信, レーダーシステム, and wireless networking equipment.

Applications of Ultrathin Rogers 4350B PCBs:

The versatility and high performance of ultrathin Rogers 4350B PCBs render them indispensable in a wide range of advanced electronic applications, including but not limited to:

  1. Wireless Communication Systems: Ultrathin Rogers 4350B PCBs are widely used in the development of wireless communication systems such as 5G infrastructure, satellite communication systems, and high-speed data transmission equipment.
  2. Aerospace and Defense Electronics: In aerospace and defense applications, where reliability and performance are paramount, ultrathin Rogers 4350B PCBs are employed in radar systems, avionics, electronic warfare systems, and unmanned aerial vehicles (UAVs).
  3. 医療機器: The compact size and high performance of ultrathin Rogers 4350B PCBs make them ideal for medical devices such as MRI machines, ultrasound equipment, and implantable medical devices where space constraints and signal integrity are critical considerations.
  4. カーエレクトロニクス: 自動車業界では, ultrathin Rogers 4350B PCBs find applications in advanced driver assistance systems (ADAS), vehicle-to-vehicle (V2V) 通信システム, and automotive radar systems for enhanced safety and connectivity.

結論:

Ultrathin Rogers 4350B PCBs represent a significant technological advancement in the field of high-frequency electronics, offering unparalleled electrical performance, 寸法安定性, and versatility in a compact form factor. With their widespread applications across various industries, these ultrathin PCBs continue to drive innovation and enable the development of next-generation electronic systems with enhanced performance and reliability.

 

What is Microtrace Rogers 4350B PCB?

Exploring Microtrace Rogers 4350B PCB: Revolutionizing High-Frequency Circuitry:

Microtrace Rogers 4350B PCB represents a significant advancement in high-frequency circuitry technology, offering unparalleled performance and reliability in demanding applications. This innovative PCB material, developed by Rogers Corporation, combines the exceptional electrical properties of Rogers 4350B laminate with the precision of microtrace technology, ushering in a new era of miniaturization and high-frequency signal integrity.

その核心, Microtrace Rogers 4350B PCB is built upon Rogers 4350B laminate, a high-performance thermoset material renowned for its low dielectric constant (DK) and low loss tangent (Df). These properties make Rogers 4350B an ideal substrate for high-frequency applications where signal integrity and minimal signal loss are paramount. By incorporating microtrace technology into Rogers 4350B laminate, Microtrace Rogers 4350B PCB achieves even greater precision and performance, making it a preferred choice for a wide range of industries including aerospace, 電気通信, and automotive.

Microtrace technology involves the precise fabrication of ultra-fine circuit traces and features on the PCB surface, allowing for higher circuit density and improved signal transmission. This technology enables designers to achieve smaller, ライター, and more efficient electronic devices without compromising on performance. With Microtrace Rogers 4350B PCB, designers can create intricate circuitry with minimal line widths and spacing, pushing the boundaries of high-frequency design and enabling next-generation electronic systems.

One of the key benefits of Microtrace Rogers 4350B PCB is its ability to support miniaturization without sacrificing performance. By reducing the size of circuit traces and features, Microtrace technology allows for higher packing densities, enabling the integration of more functionality into smaller form factors. This is particularly advantageous in applications where space is limited, such as mobile devices, wearable electronics, and IoT sensors. Microtrace Rogers 4350B PCB empowers designers to create compact, 軽量, and energy-efficient products without compromising on functionality or reliability.

さらに, Microtrace Rogers 4350B PCB offers enhanced signal integrity and stability, thanks to the superior electrical properties of Rogers 4350B laminate. The low Dk and Df of Rogers 4350B ensure minimal signal loss and distortion, resulting in cleaner, more accurate signal transmission across high-frequency circuits. This is crucial for applications such as high-speed data communication, RF/マイクロ波システム, and radar systems, where signal fidelity is critical for optimal performance.

In addition to its electrical properties, Microtrace Rogers 4350B PCB exhibits excellent mechanical and thermal stability, making it suitable for harsh operating environments. The robust construction of Rogers 4350B laminate provides exceptional resistance to moisture, 化学物質, and temperature fluctuations, ensuring long-term reliability and durability in challenging conditions.

結論は, Microtrace Rogers 4350B PCB represents a groundbreaking advancement in high-frequency circuitry technology, combining the exceptional electrical properties of Rogers 4350B laminate with the precision of microtrace technology. By enabling miniaturization, improving signal integrity, and enhancing reliability, Microtrace Rogers 4350B PCB opens up new possibilities for high-frequency design and innovation across various industries. 小型化の需要としては, もっと早く, and more efficient electronic devices continues to grow, Microtrace Rogers 4350B PCB stands poised to lead the way towards a future of high-performance, miniaturized electronics.

What is Mixed medium Rogers PCB?

Mixed Medium Rogers PCB: Bridging the Gap Between High-Frequency and Conventional Circuitry

In the realm of printed circuit boards (プリント基板), the demand for versatile solutions that can accommodate both high-frequency and conventional circuitry has led to the emergence of mixed medium Rogers PCBs. These innovative PCBs combine the high-performance characteristics of Rogers laminate materials with traditional FR-4 substrates, offering a balanced approach to meet the diverse needs of modern electronic designs.

その核心, mixed medium Rogers PCBs leverage the exceptional electrical properties of Rogers laminates, such as Rogers 4350B, which are renowned for their low dielectric constant (DK) and low loss tangent (Df). These properties make Rogers laminates ideal for high-frequency applications, where signal integrity and minimal loss are critical. By incorporating Rogers laminate layers into the PCB stackup, mixed medium Rogers PCBs ensure superior high-frequency performance, enabling efficient signal transmission and reduced electromagnetic interference (EMI).

しかし, mixed medium Rogers PCBs also integrate traditional FR-4 layers into their construction. FR-4 is a widely used substrate material known for its cost-effectiveness, 機械的強度, and ease of fabrication. By combining Rogers laminates with FR-4 layers, mixed medium PCBs strike a balance between high-frequency performance and conventional circuitry requirements. This hybrid approach allows designers to integrate both high-frequency and low-frequency components onto a single PCB, reducing complexity and optimizing space utilization.

The construction of mixed medium Rogers PCBs involves careful consideration of layer stackup and material selection. 通常, the high-frequency signal layers utilize Rogers laminates, while the inner and outer layers for low-frequency components employ FR-4 material. This strategic layer arrangement ensures that high-frequency signals propagate efficiently through the Rogers layers, while low-frequency signals are adequately routed through the FR-4 layers.

One of the key advantages of mixed medium Rogers PCBs is their versatility. These PCBs can accommodate a wide range of applications, from high-speed data communication and RF/microwave systems to power electronics and control circuits. By providing a seamless transition between high-frequency and conventional circuitry, mixed medium Rogers PCBs offer designers the flexibility to optimize performance and cost according to specific project requirements.

さらに, mixed medium Rogers PCBs offer enhanced reliability and thermal performance. The combination of Rogers laminates with FR-4 layers results in improved thermal conductivity and heat dissipation, ensuring efficient operation even under high-power conditions. This is particularly beneficial for applications that require prolonged operation at elevated temperatures, such as automotive electronics and industrial controls.

さらに, mixed medium Rogers PCBs streamline the manufacturing process by eliminating the need for separate high-frequency and conventional PCBs. This reduces assembly time, material costs, and potential points of failure, ultimately leading to faster time-to-market and lower overall production costs.

結論は, mixed medium Rogers PCBs represent a versatile and cost-effective solution for modern electronic designs that require a balance between high-frequency performance and conventional circuitry. By leveraging the unique characteristics of Rogers laminates and FR-4 substrates, these PCBs offer superior signal integrity, 信頼性, and thermal performance across a wide range of applications. As the demand for high-performance, multi-functional electronic devices continues to grow, mixed medium Rogers PCBs are poised to play a crucial role in enabling innovation and driving progress in the electronics industry.

前へ:

次: